Molecular dynamics simulation of radiation damage cascades in diamond (Dataset 2)

2020-02-20T13:36:22Z (GMT) by Donald Keith Ross
Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.

Type of Data:
Plain-text ASCII. Molecular dynamics trajectories are in Cartesian (XYZ) format with gzip compression applied. Distances in Angstroms and employing periodic boundary conditions. Simulations performed using the Environment Dependent Interaction Potential for carbon (http://dx.doi.org/10.1103/PhysRevB.63.035401).

Usage
No special software is needed. The files are so-called XYZ format. All distances are in angstroms and all energies are in eV.

Partnership between the University of Salford and Curtin University, Australia

The data consists of 8 files which are contained on two uploads (the first has 6 files attached, the second has the remaining 2 files).