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Box 3: Methodology—Predicting incidence at detection with a “rule 

of thumb” equation (Parnell et al., 2015) 

Figure 1, a 

visual repre-

sentation of 

Parnell et 

al.’s “rule of 

thumb”, a 

useful tool 

for determin-

ing  epidemic 

incidence 

early on giv-

en a particu-

lar surveil-

lance struc-

ture.  

1000 spatially stochastic epidemic simulations were run per parameter combination to  esti-

mate the growth rate r (see Box 4.a). Parameters that defined r were the dispersal distance 

parameter θ, the shape of the kernel, the transmission coefficient β and the host distribution.  

The use of the τ-leap algorithm [6], based on the poisson distribution, was necessary to reduce 

computational time. Surveillance structure was fixed, but the plants selected for sampling was 

randomised every round. 

Using the “rule of thumb” equation (see Figure 1) [5], we estimate the incidence of disease 

when it is detected for the first time, and compare this estimation against our 1000 simulated 

epidemics (see Box 4.b).  

  Box 1: Introduction 

The Food and Agricultural Organisation estimates 40% of global crop pro-

duction is lost to plant disease annually. With climate shifts and increased 

global movement, there is immense pressure for plant health managers to 

protect themselves against novel plant disease threats [1][2][3]. 

There is a need for standardised yet robust strategies for the detection and 

eradication of novel plant disease using a risk based approach that best 

informs plant health managers to how much surveillance is necessary in 

limiting disease progression whilst not over extending resources [4][5]. 

Modelling provides an excellent opportunity to explore the dynamics of an 

epidemic in the context of disease surveillance. The use of parameters rele-

vant to plant disease are very informative to modelling disease in this re-

gard. This informative approach is a critical component of testing disease 

management theories before being widely accepting by National Plant Pro-

tection Organisations (NPPOS) such as Defra in the UK.[5] 
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Box 2: Research Questions 

Can we use a spatially stochastic epidemiological model to confirm the ac-

curacy of early stage epidemic prediction equations (see Box 3)? [5] 

How do parameters such as the dispersal ability and landscape pattern in-

fluence our ability to predict early stage epidemic spread? 

Can we use simple equations to estimate appropriate surveillance effort in 

realistic but complex host landscapes?  

   Box 4.a: Preliminary results—epidemic growth curves (r) 

The transmission coefficient (β) directly relates to the epidemic growth rate. The 

landscape was homogenous, that is totally randomly distributed hosts. The shape of 

the kernel was gaussian, so long distance dispersal events are likely and dispersal 

distance (θ) was fixed. 

Even though our models are stochastic, we can “fit” a logistic growth curve to 

estimate  r, which is the important parameter in Parnell et al.’s “rule of thumb”.  

Given the time taken for β= 0.2 and 1, the parameters need adjusting to develop 

better representations of biologically feasible plant epidemics.  

Box 4.b: Preliminary results—comparative outcome between predict-

ed incidence and actual incidence  

 

 

Box 6: Next Steps 

The next objective is to generate a more biologically feasible set of simulation results by modifying our 

parameters β and θ. Furthermore, we are modifying our gaussian kernel to a fixed exponential kernel.  

Once our parameter space has been well defined, we will inductively explore different landscape con-

figurations to test “rule of thumb’s” in complex landscape patterns. 

We will validate these models against real data sets; providing NPPOs with the confidence needed to 

develop strategies based on models validated by our research.  

Figure 2, as the likelihood of infection given contact (β) increases, the epidemic 

growth rate (r) increases and time taken to reach maximum prevalence (incidence) 

decreases. Estimations of r being 0.001, 0.004, 0.017, 0.060 and 0.087 respectively.  
Figure 3, showing the average incidence at first detection (dotted blue) and the predicted incidence 

at first detection (completed blue) for respective values of β (see Figure 2). The orange lines are the 

95% confidence intervals. The blue box represents this difference in absolute and relative terms (±Δ 

and %Δ respectively).  

The accuracy of the “rule of thumb” is measured as a comparison between simulated prevalence at 

detection (1000 sims) and prediction provided by the “rule of thumb” equation (see Figure 1)[5]. 

Absolute prediction accuracy (±Δ) generally decreased as β increased, which could indicate a thresh-

old where the mathematical assumptions of our model (continual exponential growth) do not fit.  


